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The improvement and application of pest and disease models to analyse and predict yield losses including those
due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and
pests hasmostly targeted the development of support capabilities to schedule scouting or pesticide applications.
There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models.
Key research questions not only involve the assessment of the potential effects of climate change on known
pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of
pests and diseases on agricultural systems. Yield loss data collected in various current environments may no lon-
ger represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and
their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation model-
ling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential ef-
fects. A newgeneration of tools based on state-of-the-art knowledge and technologies is needed to allow systems
analysis including key processes and their dynamics over appropriate suitable range of environmental variables.
This paper offers a brief overview of the current state of development in coupling pest and diseasemodels to crop
models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the sim-
ulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data formodel
inputs; ii) improve the quality and availability of data formodel evaluation; iii) improve the integrationwith crop
models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease
modelers.

© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Quantifying the impacts of plant pests and diseases on crop perfor-
mances represents one of the most important research questions for
agricultural simulation modelling (Newman et al., 2003; Savary et al.,
2006; Esker et al., 2012; Whish et al., 2015a). In the past, theoretical
frameworks were thus developed to take into account the impact of
pests and disease on yield as separated by the other limiting factors
due to genotype x environment x management interactions. De Wit
and Penning de Vries (1982) introduced the concept of production
situation, which encompasses the combination of yield defining and
yield limiting factors, therefore determining the attainable yield. A pro-
duction situation also includes farmer crop management including pest
and disease management. This widely accepted categorization of yield
levels incorporates the crop genetics among the factors defining poten-
tial yield, and groups thewater and nitrogen stress as limiting factors to
atelli).
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attainable yield. Later, Rabbinge (1993) defined (1) a potential yield,
defined by solar radiation and temperature, (2), the attainable yield,
limited by water and nutrient availability, and (3) the actual yield, re-
duced by diseases, pests, and environmental stressors. According to
this framework, reduction of crop yield due to biotic stresses corre-
sponds to the difference between the attainable and actual yield.

The classification of yield levels constitutes the basis to guide strate-
gic decisions in the development and application of cropping system
models (e.g., Jagtap et al., 1999; Cheeroo-Nayamuth et al., 2000;
Abeledo et al., 2008), including the quantification and modelling of
yield losses (Zadoks and Schein, 1979; Savary et al., 2006; Esker et al.,
2012). For instance, a common procedure in the calibration of cropping
systemmodels is to simulate the attainable yield, that is, the yield of an
uninjured (disease and pest free) crop. Thesemodels are parameterized
by comparing model outputs with reference data collected in experi-
mental trials where there is little or no biophysical stress, so that yields
are close to potential production. This reduces the impact of experimen-
tal noise on theparameters representing the cropmorpho-physiological
traits (Wolf and de Wit, 2010; Djabi et al., 2013; Bregaglio et al., 2015).
Also, most of the available crop systemmodels offer options that enable
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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the user decide to activate nutrients andwater limitation,with a default
configuration running the potential production level (e.g., WOFOST,
Supit et al., 1994, Boogaard et al., 2011,; DSSAT, Jones et al., 2003,
CropSyst, Stöckle et al., 2003; AquaCrop, Raes et al., 2009). Currently,
such a “pest and disease switch” is still missing in many crop models,
although developments in the last decades are moving towards the
quantitative description of the impact of pest and diseases on yield.

Plant pathogens and crop-feeding insects are integral part of
agroecosystems, where they have coevolved with crops over millennia
(McCann et al., 2013). A cascade ofmutual and complex interactions ex-
ists between the cultivated crops and their pests and diseases (Berger et
al., 2007). Two main groups of processes may be considered to address
these systems, corresponding to scientific domains where modelling, in
very diverse forms, has developed. A first group is related to pathogen
population dynamics, and concerns the dynamics of Pests and Disease
Models (PDM), through which populations may spatially expand and
temporally increase. The second group addresses crop losses, and
focuses on the consequences of the host-pathogen interactions on
crop physiological processes and yield. These two broad groups of
processes are strongly responsive to physical, biological, social, and
economic factors where crops are cultivated (Zadoks and Schein,
1979). These two scientific domains were recently discussed by
Cunniffe et al. (2015), who identified the linking of epidemiological
models to yield and ecosystem services as the first challenge in
modelling plant disease, stating that models should incorporate
sufficient epidemiological realism in order to analyse and predict the
effects of disease and host dynamics on yield.

Additional key research questions involve the assessment of the po-
tential effects of climate change (Rosenzweig et al., 2001), of technology
shifts (Beddington, 2010), and of biological invasions (Venette et al.,
2010) on the future impacts of pests and diseases on agricultural
systems.

In part because crop pests and diseases are inherently part of culti-
vated systems, the measurement of their impact on crop performances
is a field of its own (e.g., Madden, 1983; Campbell and Neher, 1994;
Brown and Keane, 1997; Savary et al., 2006). Only some overall esti-
mates are available, among which is the often cited ranges produced
by Oerke (2006). Esker et al. (2012) provide a recent review of the cur-
rent scientific framework to assess the importance of pests and diseases
to crop production, including consideration (i) of production situations
and associated (uninjured) attainable crop yields, (ii) of the effects of
yield-limiting factors (i.e., abiotic stresses) on the harmful effects of
pests and diseases, and (iii) of the interactions among pests and dis-
eases. These three elements have been analysed in a few important
crop-pest systems, such as in potato in the USA (Johnson, 1992),
groundnut in West Africa (Savary et al., 1990; Savary and Zadoks,
1992), lowland rice in tropical Asia (Savary et al., 2000a, b), and
wheat in Western Europe (Willocquet et al., 2008). These examples in-
dicate that (1) the impact of pests and diseasesmay strongly depend on
production situations and on the associated attainable yields; (2) ignor-
ing the interaction of pests and diseasesmay lead to substantially incor-
rect estimates of their impact on agricultural production.

The improvement and application of PDM for predicting yield losses
to reduce risks to global food security and adaptation to climate change
is still a challenge for the scientific community (e.g., Garrett et al., 2006;
Savary et al., 2011). Data collected in various environments no longer
represents a reference data set for the development of empirical
models, because the climatic patterns the models were calibrated for
are changing. Because it enables addressing ‘what if’ questions on the
basis of quantitatively known processes, simulation modelling repre-
sents a central approach to estimating the impact of the potential effects
of climate change on agricultural production.

The objective of this paper is to present an analysis of the technical
and scientific challenges in the development of process-based models
for pest and disease modelling, and a possible road map to improve
their capability for estimating impacts on agricultural production.
2. New challenges and goals

Applied modelling of crop diseases and pests has been dominated
by short term, tactical questions, such as the development of support
capabilities to schedule scouting or pesticide applications, i.e., deci-
sion support systems (DSSs; e.g. Welch et al., 1978; Magarey et al.,
2002, Isard et al., 2015). These modelling activities are often based
on specific pest-crop systems, in specific environments, and based
on multi seasonal observations, that allowed the building of robust
empirical relationships using weather variables and crop phenology
(Madden et al., 2007). Working on given, local patterns of weather
variation and on specific pathogen and pest species has simplified
the representation of the interactions between a biotic stressor and
a host. Key aspects in the development of DSSs include knowledge
on system dynamics, built on data from multiple seasons and collect-
ed in the pest-crop systems of interest (Madden et al., 2007). An alter-
native approach has been to build models parameterized from
independent, controlled experiments, targeted at identifying organ-
isms responses to a range of environmental factors. Two of the most
popular examples are phenology models for insect pests (Welch et
al., 1978) and SEIR (Susceptible-Exposed-Infectious-Removed) and
infection models for plant pathogens (Zadoks, 1971; Magarey et al.,
2005). These kinds of models could have application for determining
how the changing climate might also alter the frequency of pesticide
applications. In some cases, it may be possible to estimate yield im-
pacts by converting forecasts of pest or disease intensity to projec-
tions of yield loss (Dillehay et al., 2005).

New challenges and goals are rerouting or integrating the priori-
ties of pest and disease modelling. The main challenge is due to
climate, which has now been demonstrated to change temperature
averages, as well as rainfall means and distributions in the season,
and to increase their variability. The shift to a non-stationary climate
now implies that observed datasets are no longer a sufficient base to
predict system behaviour even at specific locations where the data
were collected. There is evidence that pathogens which for decades
have had no impact on crops in specific environments are now be-
coming key determinants of crop yield (e.g., Lees and Hilton, 2003;
Yang and Navi, 2005; Berger et al., 2007; Parker and Warmund,
2011; Gramaje et al., 2016). At the same time, the increasingly com-
prehensive goal of estimating risks to global food security requires
the inclusion of geographical areas and production system where
the available baseline data are not adequate to develop local, robust
empirical relationships. Changes in weather patterns make it impos-
sible to address these questions solely via field experiments. Empiri-
cal approaches, based on, e.g., statistical models, could rapidly bring
about issues associated with non-linearity of responses of processes
(Garrett et al., 2006) and for climatic conditions which are beyond
the ranges in which models are developed. Also, the goal of making
estimates of pest and diseases dynamics under future conditions pre-
cludes trend analysis, which would be built on the evidence collected
from different weather patterns. Process-based modelling, combined
with the careful design of scenarios to analyse impacts, provides an
avenue to address these questions. Shared modelling structures
among a network of scientists from different fields appear to be a
most appealing and efficient way to scientifically address these
challenges.

In addition, applications of pest and disease modelling are
becoming increasingly important for strategic decisions, such as
breeding for host plant resistance in future climate scenarios (e.g.,
Duveiller et al., 2012), policy-making and priority-setting for research
(e.g., Willocquet et al., 2004), applications for risk analysis of alien
invasive species (Venette et al., 2010), and for resource allocation
(Beddow et al., 2015). A new generation of tools based on state of
the art knowledge and technology is needed to allow system analysis
including key processes and their dynamics over an appropriate range
of environmental variables.



Fig. 1. Prediction and empiricism levels in process-based crop simulation models.
Redrawn from Acock and Acock (1991).
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3. Modelling approaches and perspectives

The dynamics of plant diseases and pests and the processes involved
in crop growth and crop performance injured by pests and diseases
correspond to two distinct sets of processes. These processes have tradi-
tionally been studied by different scientific communities, leading to a
wealth of knowledge, which can be mobilized to address questions
related to the impacts of pest and diseases on crops. However, attempts
to couple PDM to crop models may have led to over-simplifications
either of the crop, or of the pest or disease. Alternately, very detailed
crop models are very hard to link to highly detailed disease or pest
models. A first objective is to couple state of the art modelling
knowledge for each of the different communities. A second objective
is to define clear modelling objectives, which lead to transparent
decisions with respect to the level of detail required in models.

3.1. Model type and purpose

A broadly accepted view (Savary et al., 2006; Esker et al., 2012) is
that injuries caused by harmful organisms (diseases and animal pests)
lead to damage (i.e., to crop organs), and that damage leads to (yield)
losses. The three elements, injury, damage, loss, are linked by two rela-
tionships (Zadoks, 1987): a damage function translates injury into dam-
age (crop losses), and a loss function translates injury into economic
loss. Much work has addressed the shape of the damage function: de-
pending on the considered system, the damage function depends on
the production situation (Rabbinge et al., 1989; Savary, 2014), on the
genotype of the host, or on the interaction with other harmful organ-
isms (Zadoks, 1985; Savary et al., 2006). The modelling of the damage
function has been undertaken using a range of approaches. Statistical
approaches, in particular (Campbell and Madden, 1990; Esker et al.,
2012), have contributed to show that a system approach was useful,
not only to predict but also to understand crop losses: the number of
factors that may affect the damage function can be large.

However, becoming aware of the existence of factors and their
interaction does not mean that the empirical relationships can be used
when considering yet-to-exist contexts. Similar to the analysis made
for crop models on levels of empiricism (Acock and Acock, 1991) and
represented by Fig. 1, building process-based models implies making
predictions two or three levels above the one where the empiricism is
built; parameters should have a biological meaning and the construct
will be a hierarchical representation based on system analysis. Such
analyses have been done for many models, and the approaches chosen
to simulate each process needs to be reconsidered with regards to the
interactions with biotic constraints.

3.2. Current trends in pest and disease modelling

Several reviews (e.g., Savary et al., 2006; Esker et al., 2012) have
documented recent advances made in the field of designing generic
simulation models for pest and disease, and for crop losses. Process-
based modelling appears to be a critical approach to quantitatively
address questions pertaining to the behaviour of complex systems,
such as the crop-pest and pathogen systems. A first challenge to
consider is the diversity of pests and diseases that affects cultivated
crops, including arthropods, nematodes, fungi, oomycetes, bacteria,
viruses, and mycoplasma. We summarize below a typical approach in
plant disease epidemiology for disease process models, which provides
guidance:

1. The disease cycle is represented by an infection chain (Kranz, 1974),
which becomes the focus of analysis;

2. Each step of the infection chain corresponds to a functional trait
(Pariaud et al., 2009) of a given pathogen in a particular pathosystem;

3. Each functional trait leads to quantifiable processes, that can be
analysed in terms of efficiency and performance, especially in
response to environmental factors, including the host and the
biological environment (Zadoks and Schein, 1979);

4. The resulting process-based information on each process constitute
the building blocks of a simple, generic, process-based modelling
structures (e.g., Savary and Willocquet, 2014; Bregaglio and
Donatelli, 2015).
Plant pathologists have developed a large number of such disease

models modelling structures, where the emphasis is placed on the mo-
bilization of primary inoculum, the production, spread, and efficiency of
secondary inoculum, or both (e.g., Rossi et al., 2009). As for crops, there
are well-established modelling platforms, as cited in the introduction,
which target the simulation of the interaction genotype x environment
x management (Fig. 2).

A second challenge corresponds to the variety of interactions that
may exist between pests and pathogens, and the growing crops. As
discussed in Savary et al. (2006), a range of concepts have made the
modelling of crop-pest and disease interactions possible through
generic, mechanistic, agrophysiology-based simulation. The diversity
of harmful organisms to crops (pathogens, animal pests, and weeds)
can be captured in a small number of guilds, each corresponding to
one type of injury mechanism (Rabbinge and Rijsdijk, 1981; Boote et
al., 1983). Thus, process-based agrophysiological models can be used
to simulate yield losses (Rabbinge et al., 1989; Rouse, 1988). Modifiers
(Loomis and Adams, 1983) can also be used to represent reduced
performance at specified points of the modelling representation of the
system. Building upon Monteith's (1972) simplified approach of crop
growth, injuries have also been pooled in twomain groups: intercepted
radiation or radiation use efficiency reducers (Johnson, 1987;Waggoner
and Berger, 1987).

One option to formalize models is via generic simulators. Generic
simulators identify key processes to represent living organisms which
are abstracted to functions whose parameters allow the representation
of different species. New functions can be added to extend the applica-
tion of generic simulators to species that havemore specialized biology.
Consequently, once a generic simulator is developed, less resources and
time are needed to develop a species-specific model, mostly via
parameterization; this avoids duplication, facilitates maintenance, and

Image of Fig. 1


Fig. 2. A summary flowchart of steps involved in the modelling of crop – pathogen and pest systems.
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makes comparison of modelling approaches simpler. Another added
value is that a generic framework serves as a template for the collection
of the required biological information for such an activity. For arthropod
plant pests, generic models have been developed for insect phenology
(Welch et al., 1978), insect populations (Shaffer and Gold, 1985;
Yonow et al., 2004) and non-indigenous pest development (Sutherst
et al., 2007; Hong et al., 2015). They require only a few parameters
and a minimum set of input data. The template approach to modelling
has been successfully used for soil conservation (Steiner et al., 2006),
for agricultural crops (Wang et al., 2002; Jones et al., 2003), and for ar-
thropod pests and diseases (Sutherst et al., 2007; Manici et al., 2014;
Bregaglio and Donatelli, 2015; Magarey et al., 2015).

The progress and impact of modelling work is greatly enhanced
whenmodels can be shared andmodified amonga broad scientific com-
munity. For example, in genomics, synteny analyses produces analytical
results far beyond that which could be expected from the informal ag-
gregation of fragmented results (Tatusov et al., 2000; Stein et al.,
2002). A recent example of knowledge sharing in biophysical modelling
is represented by AgMIP (Agricultural Model Intercomparison and
Improvement Project), a major international collaborative effort to
assess the state of global agricultural modelling and to understand
climate impacts on world agriculture (Rosenzweig et al., 2013). To the
best of our knowledge, examples of formal modelling networks shared
and used by a scientific community do not exist within the crop health
disciplines. In the case of plant disease, process-based models of the
SEIR type may represent a valid entry point for a generic modelling
effort. This type of model is generic even beyond the field of agriculture,
since thebasic concept is also broadly used in animal (van der Goot et al.,
2005) and human disease epidemiology (Newton and Reiter, 1992).
The processes accounted for by this model type indeed capture
epidemiological processes that govern epidemic build-up: disease
transmission, delay between infection and infectiousness of the host.
Concepts and theories that exist and have been applied in a fragmented
way so far can therefore be mobilized towards an effort for a generic
epidemiological modelling platform. An illustration of the genericity
and applicability of SEIR models for plant disease has been recently
made available online on the APSnet Plant Health Instructor (Savary
and Willocquet, 2014) and an extensible simulation package
(Bregaglio and Donatelli, 2015). The SEIR typemodels typically consider
two levels of hierarchy: (1) monocyclic processes, i.e., infection, latency,
sporulation in the case of aerially-dispersed pathogens, and (2) the
epidemic process, i.e., the dynamics of disease in a population of plant
hosts. Monocyclic processes can be influenced by environmental factors
such as temperature andmoisture, which can be used as model climatic
drivers. Simulated epidemics can be represented for example by the
number of lesions per crop unit area. These simulated outputs can in
turn be used as inputs for crop models that account for damage mecha-
nisms, i.e., the physiological effects of disease on crop growth and yield
(Rouse, 1988). Epidemiological models can therefore be linked to crop
growthmodels to simulate yield losses caused by diseases. Crop growth
models that include damagemechanisms have been developed over the
last decades (e.g., Bastiaans et al., 1994; Pavan and Fernandes, 2009),
using the concept of “coupling points” (Boote et al., 1983). Although
these models were developed by different teams, on different crops,
they were all grounded on the generic concept of damage mechanisms,
which can be applied not only to a range of diseases, but also to the
other yield-reducing factors (e.g., insects and weeds). GENEPEST, a
generic crop growth model including the damage mechanisms of
pests, has been recently made available online on the APSnet Plant
Health Instructor (Savary and Willocquet, 2014); the framework
Diseases in BioMA (Donatelli et al., 2014b) includes a module for the
damage on plants and a module to simulate the impact of diseases
control via agricultural management (Bregaglio and Donatelli, 2015).

3.3. Data requirements

Common inputs for PDM are air temperature, precipitation, relative
humidity, and leaf wetness (Magarey et al., 2001), at daily or hourly
resolution. Other variables such as soil temperature, radiation, wind
speed, and direction are used in more specialized models such as

Image of Fig. 2
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those targeting aerial transport or soil pathogens. For many PDM, daily
weather data is sufficient, but for many disease models hourly data is
required, which can be estimated for scenario analysis with an
acceptable level of accuracy (e.g., air relative humidity, Bregaglio et al.,
2010). Additionally, numerical weather models can provide gridded
data at increasingly finer spatial resolutions, both for current and fore-
casted data (three-fifteen days). Examples of gridded datasets that can
be used for plant disease forecasting include the Real Time Mesoscale
Analysis system (RTMA) in the United States (De Pondeca et al., 2011)
and AGRI4CAST in Europe (JRC, 2015), and Climate Forecast System
Reanalysis (CFSR ) globally (Saha et al., 2014). Many of these datasets
have ten or more years of historical data, allowing researchers to
conduct simulations in the past. For plant disease forecasting, leaf
wetness has been a limitation since the data has historically not been
collected by weather stations, except those specifically deployed for
agricultural monitoring or for research. However, the use of simulation
models is nowproving to be a practical alternative (Magarey et al., 2006;
Bregaglio et al., 2012). When targeting scenarios of climate change,
assumptions need to be made for weather variables which are not a
direct output of global circulation models, such as wind and relative
humidity.

When coupling PDM to crop models with the aim of developing an
operational tool for pest and disease management, the limiting factor
is often the lack of ad-hoc benchmark datasets. Many PDM also require
other agronomic inputs such as the leaf area index, the height of the
canopy, the width between canopy rows (or other measures of foliage
density) and soil type (e.g., Batchelor et al., 1991). However, model
evaluation generally requires datasets built on experiments which are
designed to contrast treatments to minimize the risk of making a
data-fitting exercise when performing calibration, as discussed in the
next section. Such contrasting treatments might not make any agro-
nomic sense and consequently are in general not available in field ex-
periments. Considering the coupling of PDM to crop models to
estimate the impact on yield, both models need to be verified. This
would require specific field trials, where the crop is grown in optimal
water and nitrogen conditions, both factorially crossed with at least
two levels of disease and pest injuries: “absent” and “present” (Esker
et al., 2012). This articulated design is actually not sufficient when mul-
tiple disease and pests are addressed. In such a case, very large, multi-
season field experiments are to be considered (e.g., Savary et al.,
2000a, b). Such experimental designs however are at the base of
model evaluation with the aim of providing guidance in identifying
causes of the mismatch betweenmodel predictions and the real system
performance. These experiments are costly, but the evaluation of
coupled pest, diseases and crop models must be thoroughly performed
to build confidence in their predictive capabilities, while contributing to
the general understanding of system behaviour. Other datasets, with a
lower level of detail, can be collected from actual fields to corroborate
the model development and calibration made with the detailed dataset
presented above. This is described in greater detail in the section on a
roadmap to improve pest modelling.

3.4. Model calibration and evaluation

The term calibration is overloaded in the scientific community.
Limiting the discussion to process-based crop models, model users
quite often use the term calibration for all actions related to assigning
parameter values, both to those which have a biophysical meaning
(e.g., maximumspecific leaf area), and to thosewhich aremore summa-
ry parameters to account for factors that are not considered in a specific
modelling approach (e.g., empirical coefficients to modulate growth
and maintenance respiration). However, the difference in handling
these two groups of parameters is substantial. In one case the values
must have a biophysical meaning, often resulting from physical
experiments; in the other case they can be adjusted iteratively by
minimizing a cost function. In the latter case, a model that requires
such optimizations to explain a substantial part of the mismatch
between simulated and observed values cannot be used outside the spe-
cific conditions used for calibration.

Many disease and pest models are parameterized from experiments
conducted under controlled environmental conditions. For example,
many experiments measure development time of insects (total and
stage specific), mortality, fecundity and longevity under different tem-
peratures (Regniere et al., 2012). These data can be used to parameterize
a variety of models including phenology models based on thermal time
and population models that predict the proportion of individuals in
each life stage and the total population. Likewise, experiments where
plants are inoculated under different temperature and wetness regimes
can be used to parameterize infection models (Madden and Ellis, 1988;
Magarey et al., 2005). There have been a few efforts to compile parame-
ter libraries, collecting developmental data including thresholds and de-
gree day requirements for insects (Nietschke et al., 2007; Jarošík et al.,
2011) and infection requirements for pathogens (Magarey et al.,
2005). A common approach when data for a given species is lacking is
to identify parameters from closely related species. In this case, field
studies may also be helpfulwhen controlled data are absent, particular-
ly by allowing a modeler to see if estimated parameters fit observed
data.

PDM evaluation is essential since it allows the modeler to know if
the simulations are in line with the real system. There are several
ways models are currently evaluated in plant pathology and entomolo-
gy (e.g., Rabbinge, 1993). This includes comparing simulations against
observed pest and disease intensity in, for example, sprayed and un-
sprayed plots. In plant pathology and entomology, model evaluation is
usually done by the same parties that developed the model. An impor-
tant issue is the risk of overfitting, i.e., when parameters of the model
are adjusted until themodel outputmatches very closely to the training
data, and the same model shows poor performances when applied on
independent datasets. Overfitting thus leads to false confidence in a
model's accuracy and even to failure in conditions that do not exactly
match those of the training data.

The robustness of amodel can be estimated from the stability of per-
formance across treatments and environmental conditions; overfitting
using datasets that poorly represent environmental conditions and po-
tential vs. actual management, results in a model with low robustness
(Bellocchi et al., 2010). Estimating the applicability of a model to new
conditions is qualitative, and has two requirements: i) an estimate of ro-
bustness as result of model evaluation, and ii) the evaluation of model
structure (also evaluating the level of empiricism) compared to the
major performance drivers of system, to verify that the model accounts
for the relevant processes. Robustness and evaluation of model applica-
bility are even more critical when considering the coupling of PDM to
crop models.

4. Modelling frameworks

The generic term modelling framework may refer either to concep-
tual workflows for model development and/or to actual software reali-
zations to develop and runmodelling solutions (Holzworth et al., 2015).
The main desirable features of a modelling framework are extensibility
ofmodelling approaches andmodelling solutions, transparency, and the
capability to interface to various sources of data. These features allow
easiermodel comparison andmodel evaluation against a larger number
of datasets compared to what can be done with separate model tools.
Modelling frameworks may also facilitate model construction, allowing
a more direct link to the results of research (Donatelli et al., 2014a) by
enabling the easier use of new findings in existing modelling solutions.

The following examples are not exhaustive and represent different
typologies of modelling approaches and tools available to simulate
pest and/or diseases epidemics and impacts on crops.

The modelling of biotic injuries over time and space is a well-
established field of its own, with different names depending on the
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scientific areas: plant disease epidemiology (or botanical epidemiology)
in plant pathology, and population dynamics and ecology in the animal
sciences, for instance. Grouping these different fields into a single
modelling framework is probably neither possible, nor desirable – the
modelling of population dynamics for instance addresses themes of
their own, such as population biology, plant-pest coevolution – which
do not necessarily overlap with the harmfulness of agricultural pests.
We therefore focus here on the key issue of the inclusion of disease
and pest impacts in the modelling of crop growth and crop
performance.

Crop and cropping systemmodelling is nowadays often represented
by platforms, some of which have evolved over more than 20 years.
They may consist of generic crop simulators such as CropSyst (Stöckle
et al., 2003) or STICS (Brisson et al., 2003), or of platforms which share
parts of the simulation engine (i.e., modelling approaches) and retain
specific modules for crops, such as DSSAT (Jones et al., 2003) or APSIM
(Brown et al., 2014). Fruit tree crop models are specific for species
(e.g., Lakso and Johnson, 1990; Grossman and De Jong, 1994). These
models may include modules to account for the damage due to biotic
stressors, but these modules are embedded into the code.

4.1. APSnet

On the American Phytopathology Society website (APSnet), an edu-
cational module on Simulation Modelling in Botanical Epidemiology
and Crop Loss Analysis provides an overview of PDM and crop loss
models. It also includes an introduction to a number of generic models
including the GENEPEST model, as well as instructions for running the
models. An overall framework formodelling the impacts of pest and dis-
eases on agricultural systems using these kinds of models is provided in
Savary et al. (2006), which we can summarize as follows:

1. farmers' fields surveys are conducted over a given geographical
range, at many locations, and several years, to characterize (i) pro-
duction situations (PS) and (ii) injury profiles (IP);

2. field experiments are conducted to measure and statistically model
PS, IP, and PS x IP effects on attainable yield (Ya), actual yield (Y),
and yield losses (Ya - Y);

3. a mechanistic simulation model of crop growth and yield is built, to
account for (i) features of PS influencing crop growth (yield defining
and yield limiting factors), and (ii) processes which may be affected
by damage mechanisms;

4. this preliminary model for crop growth, yield accumulation, and
yield reduction is verified through a series of evaluations involving
(i) a range of parameters that account for the characterized produc-
tion situations (effects on attainable yield, Ya), and (ii) a range of
levels of injuries derived from the injury profiles characterized dur-
ing farmers' field surveys;

5. a series of field experiments are conducted at several locations, in a
range of climatic conditions, and at different levels of input, in
order to mimic varying production situations, and with a range of
levels of injuries, corresponding to the injury profiles characterized
in farmers' fields;

6. simulation outputs are confronted to results from field experiments
to assess the ability of simulations to account for (i) effect of produc-
tion situations (PS) on attainable yields, (ii) effects of individual
injuries and injury profiles (IP) to reduce yield from attainable to
actual, and (iii) PS x IP interactions on crop growth and yield.
This approach has been followed in the case of the rice-multiple pest

system in Asia, where the successive steps above have been document-
ed (Savary et al., 2000a, 2000b; Willocquet et al., 2000, 2002, 2004). It
also has been implemented in the case of the wheat-multiple pest
system in Western Europe, using extensive, published survey work in
the Netherlands (Daamen, 1990; Daamen and Stol, 1990, 1992, 1994;
Daamen et al., 1991, 1992), and the UK (King, 1977; Polley and Thomas,
1991; Foster et al., 2004), as well as a large body of published parameters
on damage mechanisms in the wheat – multiple pest system
(Willocquet et al., 2008).

Fig. 2 sketches the relationships between the six stages presented
above. Variation may of course occur depending on the crop – disease
and pest system considered, however Fig. 2 emphasizes the importance
of field work: farmers' field survey, which produce the essential
information on production situations and injury profiles, and field
experiments with a design specifically developed for modelling
purposes.

4.2. The APSIM-DYMEX link

TheAgricultural Production Systems Simulator (APSIM), is a systems
modelling framework that has been developed over the last 20 years
(Holzworth et al., 2015). The collection of models available within
APSIM provide tools and resources to explore the dynamics of agricul-
tural landscapes. APSIM does not incorporate pests and diseases. Some
work examining competition between weeds and crops has occurred
(Deen et al., 2003; Robertson et al., 2001),whichwas extended tomodel-
ling of the weed seed bank (Smith et al., 2000) and genetic dispersal of
resistant weeds (Thornby and Walker, 2009). However, limitations
within these approaches prevented further development (Whish et al.,
2015a). A recent addition to APSIM has been the linking of the popula-
tion modelling framework DYMEX (Whish et al., 2015a). DYMEX
(Sutherst and Maywald, 1998) was developed to simplify the construc-
tion of mechanistic, process-based population models (Sutherst et al.,
2000) and has been used to describe the life cycles of insects, weeds
and diseases. Models are constructed within the DYMEX building soft-
ware and compiled to run within the DYMEX simulator. The linking of
DYMEX and APSIM was favoured over the construction of a specific
pest and disease module within APSIM because it reduced overheads
and capitalised on the history and success of both modelling frame-
works (Whish et al., 2015a). The link between the two frameworks
was created by wrapping the DYMEX simulation engine within
APSIM. This approach took advantage of themulti-point featureswithin
APSIM (the ability to simultaneously simulate multiple points in space
and the interactions between them) and the input/output features
that simplified communication between multiple models. The integra-
tion of DYMEX as an APSIM component allows the DYMEX component
to executewith the rest of the APSIM simulation, accepting information
from other modules (e.g. weather data from APSIM climate files or soil
moisture from the water balance model) and sending information
(population size, infected leaf area) to other models within the APSIM
framework. The use of the generic wrapper to link the two frameworks,
allows anymodel constructed in the DYMEX building tool to runwithin
APSIM. The DYMEX-APSIM link has been successfully used to model
rust (Puccinia striiformis) growth onwheat and demonstrated the inter-
actions of large rust populations reducing the wheat crops leaf area
(Whish et al., 2015a). An examination of the population decline in
root lesion nematodes (Pratylenchus thornei) over a non-host fallow is
another example of this approach (Whish et al., 2015b).

4.3. NAPPFAST

An example of the interactive modelling templates was the North
Carolina State University/Animal and Plant Health Inspection Service
Plant Pest Forecasting System (NAPPFAST; Magarey et al., 2007, 2015)
that was an active project between 2002 and 2013. The NAPPFAST sys-
tem employed an internet-based graphical user interface to link interac-
tive templates with weather databases. NAPPFAST included three
modelling templates: a degree day template for creating phenology
models for arthropod pests and plants, an infection model template
for plant pathogens, and a generic template for creating simple empiri-
cal models; e.g., hot and cold exclusion. Each template follows a simple
fill-in-the blank design. All templates in NAPPFAST were generic (i.e.,
applicable to many species) to meet the needs of diverse users. The
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templates in NAPPFAST were linked to stations and to North American
and global gridded weather databases. The capabilities allowed
NAPPFAST to create pest riskmaps (Magarey et al., 2011) at resolutions
of 5 km in the United States and 38 km globally. More recently some of
the technologies developed for NAPPFAST have been applied for the
integrated Pest information Platform (iPiPE) project. The iPiPE was
created to promote the exchange of pest data among agricultural
professionals (Isard et al., 2015). It is an information technology
platform that provides tools and models for managing and analyzing
data in order to generate products and commentary for integrated
pest management (IPM) and national food security. The iPiPE brings
together Extension professionals, county agents, crop consultants,
industry, federal, and state partners by allowing the exchange of pest
observations while protecting client privacy. Like NAPPFAST, the iPiPE
will include models for simulated pest phenology, infection and pest
intensity (Hong et al., 2015) but will use hourly weather inputs.
Although the models available in the iPiPE are designed to primarily
simulate the timing of pest occurrence to enable management
operations (such as scouting) the modelling approach could potentially
be used to estimate the impacts of pests. For example, impacts might be
estimated from simulations of pest or disease intensity in combination
with estimates of host phenological susceptibility (Dillehay et al., 2005).

4.4. BioMA-Diseases

This modelling framework (Bregaglio and Donatelli, 2015) is com-
posed by four extensible software libraries targeting the modelling of
a generic fungal plant diseases. It provides input/output data structures
and models to simulate a polycyclic fungal plant epidemic and to quan-
tify its impact on crop growth. The rationale guiding the development of
this framework entails the definition of four sub-domains in themodel-
ling of plant disease epidemics: (i) the production of primary inoculum
and the occurrence of primary infections, (ii) the development of sec-
ondary infection cycles during the cropping season, (iii) the interactions
between epidemic development and crop physiological processes and
(iv) the impact of agricultural management practices on disease devel-
opment (Fig. 3). This discretization also reflected in the software devel-
opment of the components, which provide users with an existing
definition of specific domains to focus on when introducing new
models, other than favouring their stand-alone application and exten-
sion. These tools were developed according to the specifications of the
BioMA framework, which is a public domain software framework de-
signed and implemented for developing, parameterizing and running
modelling solutions based on biophysical models in the domains of ag-
riculture and environment (Donatelli et al., 2014b). The adoption of
component-oriented programming and the definition of the ontology
of input and output variables promote the link of the Diseases compo-
nents with large area databases and their interface with external tools
to perform model sensitivity analysis. Two applications of this tech-
nique were realized on major diseases of wheat (brown rust) and rice
(leaf blast) in Europe and China, respectively, to test model behaviour
under heterogeneous weather conditions according to changes in pa-
rameters values. Although the main target of the Diseases component
is the scenario assessment when limited reference data are available
(e.g, in climate change conditions), a recent study by Bregaglio et al.
(2016) documents the extension and application of Diseases-based
modelling solutions to reproduce reference field data referred to the an-
nual fluctuations of rice blast disease epidemics in Northern Italy.

5. A roadmap to improve pests and diseases impact modelling

We propose a roadmap to improve the simulation of the impacts of
pests and diseases in agricultural crop simulation models. The action
plan concerns five areas: i) improve the quality and availability of data
for model inputs; ii) improve the quality and availability of data for
model evaluation; iii) improve the integration with crop models; iv)
improve the processes formodel evaluation and v) develop a communi-
ty of plant pest and disease modelers (Fig. 4).

5.1. i) Improve the quality and availability of data for model inputs

The process-basedmodelling of the dynamics of plant pests and dis-
eases aims at reproducing the biophysical processes guiding their devel-
opment and spread in time. The effect of weather conditions has
traditionally been an important focus of these models. The dependency
of the pathogen growth rates of pathogens on the variability of weather
conditions implies that models should reproduce these relationships by
modulating their responses accordingly (Magarey et al., 2005; Pfender et
al., 2012). The availability of high-quality input datasets is necessary to
calibrate PDM parameters, for instance the ones related to temperature
and moisture response functions. As discussed in the section above,
themain drawback of low-quality datasets is the reduction of model pa-
rameters that have a biophysical meaning to empirical coefficients that
merely improve model fit to reference data. This is why the quality of
input data is key in pest and disease modelling: micrometeorological
variables at canopy scale and at high time resolution, such as air temper-
ature, relative humidity and leaf wetness are needed to reduce the un-
certainties during calibration and evaluation activities. In particular,
the availability of leaf wetness observations for pest and disease fore-
casting/modelling is often limited to specific experimental trials, being
constrained by the presence of leaf wetness sensors on agricultural
weather stations (Lee et al., 2015). For this reason, a viable alternative
for leaf wetness data to drive PDM on large scales is the estimation of
leaf wetness from commonly measured meteorological variables (e.g.,
Magarey et al., 2005). Leaf wetness simulation models have been devel-
oped since 1982 to estimate leaf wetness (e.g., Magarey et al., 2005;
Sentelhas et al., 2006), but more effort is needed to evaluate their reli-
ability under a range of weather conditions and cropping systems
(Bregaglio et al., 2011). For example, gridded numerical models are
now able to supply weather information on hourly basis and at a 5 km
resolution in the United States (De Pondeca et al., 2011). However, this
information has to be downscaled to the level of a canopy to provide ac-
curate pest disease forecasts. Defining the limits of applicability in pest
and disease modelling studies is necessary when they are applied
under unknown temperature and wetness regimes, as in the case of cli-
mate change studies.

5.2. ii) Improve the quality and availability of data for model evaluation

Although field observations of pest and disease impacts on crops
have been widely collected for many years (e.g., Nutter, 1989; Esker et
al., 2012), measurement methods lack standardization, and usually are
not linkedwith weather or agronomic data to enable their use as inputs
for PDM. As a consequence, the extensive validation of PDM across di-
verse environments has been limited to very few cases (e.g.,
Willocquet et al., 2000, 2002, 2004). Consequently, there is a need to de-
sign protocols which can guide the collection of the experimental data
needed to calibrate and evaluate PDM and crop loss models, including
both epidemiological and crop data (see e.g., Willocquet et al., 2000),
as summarized in the section Data requirements. We propose here a
tentative distinction between high (HQ) andmedium (MQ) quality ref-
erence datasets for model calibration and evaluation, according to the
typology of the variables to be measured and to the frequency of their
sampling during the growing season.

A HQdatasets for PDM calibration and evaluation should include the
full complement of data, including injury measurements, environmen-
tal (weather), and agronomic (crop growth and development) data
characterizing the impact on the crop. Experimental observations
should include multiple measurements of pest and disease injuries
(e.g., severity or incidence depending on the injury) during the growing
season, and the quantification of yield loss due to pests and diseases. Ad-
ditionally, detailed measurements related to plant physiological



Fig. 3. Schematic representation of the four Diseases components (coloured boxes) and of their interaction (grey arrows). For each component, themain processes, inputs and outputs are
reported, with charts presenting sample simulations. The variables shared among Diseases components are reported in italics; the variables produced by the crop model are reported in
bold. HT = host tissue, AGB = aboveground biomass, LAI = leaf area index.
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processes as affected by the pathogens should be performed, including
for instance effects on photosynthesis, maintenance respiration and
leaf senescence. Injury assessments should be collected in unsprayed
experimental plots as well as on protected plots (Zadoks and Schein,
1979; Savary et al., 2006; Esker et al., 2012). Weather data should in-
clude temperature, relative humidity, precipitation and leaf wetness
(whenever appropriate, e.g., in the case of diseases of the foliage). Refer-
ence leaf wetness data, for instance, should be collected either using
visual observations or a camera at a limited number of sites. Agronomic
observations should include attainable (i.e., uninjured) and actual (in-
jured) yield data, aswell as leaf area index, crop height, variety, previous
crop, and pesticide applications.MQdatasetswould not include dynam-
ic information collected during the growing season, but must include
quantitative information to characterize the level(s) of injuries (e.g.,
severity or incidence at key crop development stages) and their impact
on crop performance (final yield), other than basic meteorological data
to drive PDM.

5.3. iii) Improve the integration with crop models

The dynamic linkage between disease and pest injuries and the host
crop is through coupling points between PDM and crop models. The
framework presented by Rabbinge and Rijsdijk (1981) and Boote et al.
(1983) describes seven mechanisms of pest and disease damage on
crops - i.e., light stealer, leaf senescence accelerator, tissue consumer,
stand reducer, photosynthetic rate reducer, turgor reducer and assimi-
late sappers. Dedicated experiments can be performed to classify and
quantify the damage of different pests and pathogens, as done on

Image of Fig. 3
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several pathosystems by Savary et al. (1990), Bastiaans et al. (1994),
Bassanezi et al. (2001) and Robert et al. (2006). The translation of
these injuries intomathematical functions offers the possibility to incor-
porate them into the biophysical processes simulated by crop models.

There are examples in literature inwhich crop and PDMare linked in
different ways, ranging from the use of phenological data to initialize
the simulation of a disease model (heading date, Del Ponte et al.
2009), to the ex-post application of simulated disease severity on crop
model variables (Luo et al., 1997) and to the dynamic integration of
PDM and crop model outputs (Pavan and Fernandes, 2009). A pest or a
disease can impact crop growth, consequently affecting the resources
used by the crop during its life cycle, and having a direct feedback on
the system. Also, pests and diseases can be obligated parasites whose
life cycle and trophic relationship is driven by the presence of the host.
Consequently, in most cases PDM should be synchronously run with
crop models. Aside from the modelling knowledge required, this
would lead also to potential problems including the complexity of the
model architecture, binary incompatibilities when different software
platforms are used, difficulties to test such interactive models, and diffi-
culties in sharing such complex models. These issues are addressed by a
vast literature, so discussing these aspects is beyond the scope of this
paper.

We identify here threemain criticalities to be faced when a coupling
point is realized:

1. Suitable identification of the damagemechanisms to be considered is
necessary to select the crop model outputs to be affected by the pest
and disease injuries via coupling points.

2. The outputs of the pest and disease model must be linked to the se-
lected crop model variables, either directly or via additional
functions.

3. The time step of the communication between the pest/disease and
the crop model must be decided according to the internal time step
of the two models.
A simple but efficient classification of crop models identifies two

main categories on the basis of the level of detail adopted in the simula-
tion of the accumulation of dry matter (Kropff et al., 1995). The first
groups include the most complex models, which upscale the instanta-
neous CO2 leaf assimilation rate at canopy scale, thus simulating the
gross photosynthesis and then subtracting themaintenance and growth

Image of Fig. 4
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respiration to achieve net daily growth rate. The models belonging to
the other group share the concept of radiation use efficiency, which en-
ables the quantification of dry matter growth rate as a function of the
intercepted radiation. Both groups of models produce outputs such as
phenological development, leaf area index and daily growth of the dif-
ferent plant organs, usually at a daily time step. The selection of the
crop model to be coupled to the pest and disease damage must be
done after verifying the presence of the corresponding variable to be af-
fected by the PDM output. For example, if the PDM impacts the increase
of crop maintenance respiration, this variable must be an explicit vari-
able of the crop model, otherwise a surrogate variable must be used as
a coupling point.

5.4. iv) Improve the processes for model evaluation

Improving capabilities to estimate the interaction between pests,
diseases and crops requires actions along two lines: building models
andmodelling tools, andmodel evaluation. Althoughwe aim at building
genericmodelling frameworks, model evaluationmust focus on specific
crops (within crop rotations).

In the AgMIP project (Rosenzweig et al., 2013), a phase of evaluation
requiresmodelers to run simulations corresponding to test data sets for
which they have not seen the observations of the response variable
(“blind” datasets, for example yield for crop models). For plant pest
and diseasemodelling, one of the evaluation challengeswill be to devel-
op appropriate evaluation criteria to judge model success or failure. For
example, observations of pest and disease impact may be typically re-
corded in terms of units such as insect numbers, percentage of host tis-
sue affected or pest incidence. Likewise, PDMmay have vastly different
output units. It will be necessary to overcome these differences in mea-
surement units in order to statistically compare models performance
and to highlight areas for their improvement. This requires the develop-
ment of standard criteria for model evaluation, which can be tailored to
specific crop-pest system and research questions. The definition of such
standards will impact the building of datasets, providing specifications
on the data model and necessarily leading to metadata definition.

5.5. v) Develop a community of plant pest and disease modelers

The development of improved pest and disease models has been
hampered by the lack of a cohesive research community. There are sev-
eral reasons why a community has not developed already. The major
point is likely the misunderstanding of roles, in which some modelers
might look at experimentalists merely as “data providers.” Likewise ex-
perimentalists may under-evaluate the power of modelling tools and
consider the abstraction and generalization required formodel develop-
ment as threat to a more detailed biological description of the pest or
pathosystem. A special effort which can be acted on building a commu-
nity as discussed in the coming section is needed to clarify that both
model developers and experimentalists are researchers aiming at un-
derstanding systems behaviour, and to bridge their communication
gap. Another entry point is to increase the community of “modelers-ex-
perimentalists”, who implement both skills by conducting the model-
ling and experimental work in interaction. Another historical
limitation is that until recently there have been few generic model
frameworks that allowed researchers to move from one pest or
pathosystem to another. In addition to what we have discussed above,
the limitations of data availability and the absence of standard protocols
further limited cooperation in modelling. The Pest and Disease Model-
ling Intercomparison project (PeDiMiP) was established in 2015, as
part of the Agricultural Modelling Intercomparison Project (AgMIP), to
address many of the research questions we have outlined in this article.
Specifically, the overall goal of PeDiMiP is: "to significantly improve ag-
ricultural pest and disease and crop loss models and scientific and tech-
nological capabilities for assessing impacts of climate variability, climate
change and other driving forces on crop losses, agriculture, food
security, and poverty at local to global scales”. To enable this mission,
the goal is to create a next-generation knowledge platform for agricul-
tural pest and disease modelling, and coupling it to crop models for
worldwide use. Specifically, we propose three objectives i) Improve
PDM and their linkages to crop models, ii) Demonstrate the use of
PDM for impact assessments, and iii) Create education and trainingma-
terials for pest and disease and crop lossmodelling. PeDiMIP is currently
composed of three sub-teams, the Crop Health, Potato Late Blight, and
Wheat Rust modelling that are working on these objectives.
6. Conclusions

The need to estimate the impact of pests and diseases on agricultural
production is an important element in the development and analysis of
scenarios impacting farmers income and food security. There has a been
a shift in the type of model needed to make quantitative estimates of
yield loss requiring models with a broader applicability, due both to
the need to address the impact of climate change and to the interest
on extending the capability of providing estimates globally. To meet
both requirements, modelers face the lack of reference data and the
need to improve the robustness and applicability of simulation models
over such conditions. Historically, obstacles such as the complexity of
PDM models and the lack of standards for data collection, model con-
struction, and model evaluation has inhibited the development of
both comprehensive modelling tools and a coherent pest and disease
modelling community. Although there is a wealth of knowledge on
pest and diseases modelling, and on crop modelling in scientific com-
munities, the sharing of knowledge is still quite limited. In this paper,
we provide a roadmap for improving agricultural crop simulation
models by incorporating the impacts of plant pest and diseases which
may be used as a template to address the modelling of a specific
pathosystem. We believe that the PeDiMIP and AgMIP projects offer a
critical opportunity to overcome these obstacles and so improve the sci-
ence of cropping system simulation modelling.
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